Reduction of the glass transition temperature in polymer films: a molecular-dynamics study.

نویسندگان

  • F Varnik
  • J Baschnagel
  • K Binder
چکیده

We present results of molecular-dynamics simulations for a nonentangled polymer melt confined between two completely smooth and repulsive walls, interacting with inner particles via the potential U(wall)=(sigma/z)(9), where z=/z(particle)-z(wall) and sigma is (roughly) the monomer diameter. The influence of this confinement on the dynamic behavior of the melt is studied for various film thicknesses (wall-to-wall separations) D, ranging from about 3 to about 14 times the bulk radius of gyration. A comparison of the mean-square displacements in the film and in the bulk shows an acceleration of the dynamics due to the presence of the walls. This leads to a reduction of the critical temperature T(c) of the mode coupling theory with decreasing film thickness. Analyzing the same data by the Vogel-Fulcher-Tammann (VFT) equation, we also estimate the VFT temperature T0(D). The ratio T0(D)/T(bulk)(0) decreases for smaller D similarly to T(c)(D)/T(bulk)(c). These results are in qualitative agreement with that of the glass transition temperature observed in some experiments on supported polymer films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of cyclic olefin polymers with high glass transition temperature and high transparency using tungsten-based catalyst system

Novel cyclic olefin polymers (COPs) derived from bulky cyclic olefins, tricyclodipentadiene (TCPD) and tricyclo[6.4.0.19,12]-tridec-10-ene (TTE), with high glass transition temperature (Tg), excellent thermal stability, and high transparency, have been synthesized by ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation. ROMP of TCPD and TTE was carried out successfully wit...

متن کامل

Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films.

We perform molecular dynamics simulations of an idealized polymer melt surrounding a nanoscopic filler particle. We show that the glass transition temperature T(g) of the melt can be shifted to either higher or lower temperatures by tuning the interactions between polymer and filler. A gradual change of the polymer dynamics approaching the filler surface causes the change in the glass transitio...

متن کامل

Effects of a nano-sized filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films

We perform molecular dynamics simulations of an idealized polymer melt surrounding a nanoscopic filler particle to probe the effects of a filler on the local melt structure and dynamics. We show that the glass transition temperature Tg of the melt can be shifted to either higher or lower temperatures by appropriately tuning the interactions between polymer and filler. A gradual change of the po...

متن کامل

A coarse-grained molecular dynamics study of segmental structure and mobility in capped crosslinked copolymer films.

We present results from molecular-dynamics simulations of a generic bead-spring model of copolymer chains confined between solid walls and report on the glass-transition temperature and segmental dynamics as a function of film thickness and mesh size (the end-to-end distance of the subchains in the crosslinked polymer networks). Apparently, the glass-transition temperature displayed a steep inc...

متن کامل

On the Equivalence Between the Thermodynamic and Dynamic Measurement of the Glass Transition in Confined Polymers

Understanding why the glass transition temperature (Tg) of polymers deviates substantially for the bulk with nanoscale confinement has been a 20-year mystery. Ever since the observation in the mid-1990s that the Tg values of amorphous polymer thin films are different from their bulk values, efforts to understand this behavior have intensified, and the topic remains the subject of intense resear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002